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INVESTIGATION OF THE PRESSURE DISTRIBUTION OF METAL ON THE ROLLS
DURING THE ROLLING PROCESS

A. I. Kolpashnikov and A. N. Anufriyev

ABSTRACT

Derivation of an equation for stresses developing
during roiling, as a function of rolling rate, size of
the rolls, geometry of the product, and friction. A
preliminary comparison of theoretical and experimental
results shows good agreement.

*
A theoretic and experimental study of the specific pressure /83

distribution along the capture arc and the metal cross section at the
opening of the rolls is of great interest, and makes it possible to

study plastic deformation during rolling. A knowledge of the laws govern-
ing metal deformation during rolling is necessary, both for planning and
constructing new rolling mills, and for developing existing mills. It also
makes it possible to correctly construct the main operational units of

the mill and to select the most advantageous technological rolling

process.

Up to the present time, there has not been sufficient research
on many problems relating to the nature of physico-mechanical pro-
cesses occurring in a metal during large plastic deformations. The
assumptions advanced by different researchers on this problem do not have
a comprehensive, scientific basis, since the theoretical conclusions do
not fully correspond to the experimental data.

Existing rolling theories do not provide the analytical dependence
of stress on the factors influencing it. Therefore, equations showing '
the influence of the stress state on the specific pressure have been
approximately derived. Curves showing the distribution of specific press-
ures during rolling, which were compiled in accordance with the Karman
theory, have not been substantiated by experimental diagrams. The
theoretical curves have two concave branches which rise toward the
critical cross-section and which form a peak-like curve, while the experi-
mental curves have convex branches with a dome-shaped apex. The lack of
agreement between the theoretical curves and the experimental curves may

* Numbers given in the margin indicate pagination in the original
foreign text.



primarily be explained by the fact that the law governing the friction
on the roll surfaces in the deformation zone is not taken into account
correctly in the theoretical formulas based on the Karman theory.

The main problem encountered in rolling, which underlies any
future, comprehensive research, is the study of a theory for the metal
deformation mechanism in rolls during rolling. This report makes an
attempt to formulate analytically the relationship between stress during
rolling and the factors influencing it: the rolling rate, the geo- /84
metric dimensions of the rolls and the bar, and the friction between
the rolls and the metal, etc.

Let us examine the rolling process, in the case when the rolls are
cylindrical and when the width of the bar to be rolled is several times
greater than the length of the capture arc. Therefore, the influence of
the widening can be disregarded. It may thus be assumed that this is a
two-dimensional problem. For this purpose, let us employ the equation of
plasticity for two-dimensional deformation

(2) 4+, = (1)

where, k is the resistance to pure shear;

b= —2
V3

Op ~ actual resistance to distortion during linear deformation,

= 0,57n,n.n,0,;

i.e., during simple contraction or expansion with allowance for the in-
fluence of temperature, deformation rate, and cold hardening;

n_, 3 n_ - coefficients taking into account the influence of
r* " Uy

temperature, cold hardening, and deformation rate on resistance to de-
formation;

o, ~ yield point.

When the stress direction O and ¢_ coincides with the main axes /85
of the stress, the plasticity equation (1) assumes the following form:

0y — 03 = 2k, (2)

It may be seen from the equation (2) that the beginning of plastic de-
formation is not determined by the absolute values of normal stresses,
but rather by their difference. We may distinguish a certain element

with the dimensions dx in the cross-section hx (Figure 1),
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Figure 1

Diagram of Stress Distribution During Rolling

(1) - Neutral cross-section

For the element selected, we may take the vertical and horizontal

stresses ol and 03 as the main stresses; the main stress 03 coincides

with ox(03 = cx). Equation (2) may now be re-written as follows:

0, =2k +oq,. | (3)
There are two unknowns in equation (3). In order to solve this equa- '
tion, we must eliminate one unknown, and in order to do this let us first
examine the diagrams of the stress state at the deformation center during
two-dimensional rolling
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Taking the influence of the outer zones into account -~ i.e., the
zones adjacent to the geometric center of deformation - we may note that
digram 3 is characteristic for rolling, as it results along the entire
height of the cross-section hx’ i.e.,

%
!

4) ¢ -> - o,
) *av A3y -

t

9y

From this point on, in order to derive the formula we shall not /86
be interested in the true value of o along the cross-section height

hx’ i.e., ox = f(hx)' In order to derive it, we shall confine ourselves

to the averaged stress o . Let us re-write equation (3) with o’ :
X av X av

?1= 2k+0xav. (4)

In order to indicate the stress O av in diagram 4, we need only assume

the same stress, only directed toward the other side. In the vector form,
this may be expressed:

- ->
— =0 .
*ay

The stress O av - o has an influence along the entire cross-section
area. Consequently, the product cx:avhxb is none other than the force
gx: _
Px - c,xavhxbv (4,)

where hx is the cross-section height;

b - Width of the bar being rolled.




Based on the given rolling parameters, we may find the average
velocity of the bar at the deformation center in the direction of the
abscissa x, and then the acceleration in the same direction. The volume
per second of the metal being rolled, passing through any cross-section,
must be constant:

V=u, hb=uvhb,

av (5)
where Vx ay ~ mean velocity of the metal in the cross-section under

consideration;
hX - cross-section height (of the bar);
b - cross-section width (of the bar);
v] - average velocity of the bar cross-section at the roll outputs;
h; - bar height at the roll outputs.

We may find the mean metal velocity for the cross-section under
consideration from equation (5):

v, =t (6)
*av he °

From Figure 2 we may find hX by means of the angle o (hx = f(a):
h,=hy 4+ 2r(1 —cosa). )]

Solving the system of equations (6 and 7), we may find the mean velocity
of the cross-section motion hx:

v — vlhl
*av by 4-2r(l —cosa)

(8)

In order to determine the mean acceleration of the metal in the cross-
section h in the direction of the axis x, we must take the first deriva-

X
tive of the mean velocity with respect to time

a. = dvr o, — 2rv,hy sin o go_c_.
av— dt {hs = 27 (1 -~ cos a))* dt 9)
Let us employ the second law of Newton in order to determine the stress/87
%% av (P = ma). The force Px [equation (4')] and the acceleration a,

[equation (9)] may be expressed by the corresponding parameters. We must
now find the mass m. Since we shall solve this like a two-dimensional
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problem, in order that shear may occur along the horizontal axis, it is
necessary to overcome the resistance which is proportional to the mag-
nitude of k. The force P'y is required in order to overcome this resis-
tance along the entire cross—section surface.

The metal in the deformation zone moves with an average accelera-
tion of a ., Therefore, the force of inertia P"x exists during rolling.

In addition to these two forces (P'% and P"X), the friction force Ffr

has an influence along the contact surface. Let us balance all of the
forces given above by the force P :

P, = Py + Px + Fg cosa. - (10)

The plus sign in front of the third term in the right part of the equation
pertains to the trailing zone, and the minus sign pertains to the advancing

zone. Let us determine the components P'X, P"x and Ffr:

’ k
Py = 'Ehxbaav; v (11)
P; = npvhxbaav, (12)

3
where p is the density in g/cm”;

T dx
= —— ba,, (13)
Fay g cosa v

Let us substitute the values P'x, P"x and F
(13) in equation (10):

£r from equations (11), (12),

. _ . <
P, =% hba,,+ npvhboayt — dxbay. (14)
2 ,
The third component in the right part of equation (14) will equal /88
zero, since‘_I_baav is a finite quantity, and dx is infinitely small

g
of the second order. Consequently, the entire expression will strive

to zero. We then have

P,= hbay + nPUhxbaaV . (15)

w |-

Let us divide both parts of equation (15) by the product hxb’ i.e., by

the surface of the cross-section under consideration:

6
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Diagram of the Rolling Process

Py k .
heb _g- Gy + npua oy

The term Px/hxb is nothing else than oxX__

-—P_r. = a‘ .
hb av
& | _
% gy 3 aav+ npvga, . (16)

2
If Ux/av is expressed in kilogram force/mm , aav = g in em/sec, and v

. 3
in cm/sec, and p in g/em”, then the coefficient n will equal

n= - I .
981 . 108

Let us substitute the value of the coefficient n in equation (16)

1

981.108 foav” (17)

Us
) s, |
Figure 2
k
%% av™= 981 Ayyt

In equation (17) let us substitute the value found for the acceleration

(9



k 2ro by sine da 1 2ruhy sina do

o _——— = =
g (A4 2r (1—cos @)]* dt g-108. po A+ 2r(1 —cos a))* dt”

==

Xay

When this equation is solved, the minus sign is cancelled, since neg-
ative values of the angle o are substituted in the equation (see Fig-
ure 1). From this point on, we shall substitute absolute values of
the angle a. Taking this fact into account, let us re-write equation
(18) with the plus sign

: pt 2ruyfy sin a do
o, = (k4 r.f.) roy iy da. (19)
“av ( 108/ g{h+2r (1 —cos )]* dt *

5
Due to the fact that the second term (pv/10 ) in the right part of
equation (19) is insignificant as compared with the first (k), we may
disregard it. We then have

. ‘.= & L .mlh| sine ‘_i_g_
Tav " g [k + 21— cose))® dt *

(20)

Let us write the following equation of plasticity for the element /89
having the dimension dx (see Figure 1):

9 =2k+3_; | (21)
_ Zk_l__i’_k_ vk sina do

c1 I —_—
g [+ 2r(l—cos a)}* dt

'

The main stress 01

will act along the vertical at the point C

. dx dx .
o\dx = p, ——C0sa& 41— ~-sin x;
Cos & Cos

’ 22
0, = (pxdx-‘F—'.--df— <in a) ! (22)

= cosa dx
Since the second term in the right part of equation (22) is significantly
less than the first term, it may be discarded without entailing any large
amount of error, and we then have

[
g1 = P,

The stress 9% av acts upon the surface 1 x 1 mm, and during rolling there

is deformation simultaneously along the entire height of the cross-section
h,. Therefore, the stress in the direction of the axis x for the entire
cross-section increases by a factor of hx’ while in this case hX has the
dimensions in mm:



. (23)
O'xav = a‘avh“"

The equation of plasticity (2) connects the quantities px and 0}'{

av
by the following dependence:
Pr — 0z, = 2%,
and we thus have ,
Py = 2k 4 O, e (24)
Solving the system of equation (23 and 24) we obtain
P, = 2k + 9 aifise (25
Substituting % av (20) in equation (25), we obtain
2 vy sine de
Pe=2k-+n—=Fk - hy —,
* 981 [+ 2r(il—cosa)]® * d¢
where n is the dimensionality coefficient (n = 10 1/cm);
We then have he=h + 2r(1 — cos a),
Pe= 2k +2,04.5.10-2 — tfrsinc do ’6
hy+2r(l —cos &) dt * (26)

Substituting do/dt in equation (26), we obtain the formula for deter-
mining the specific pressure along the capture arc:

fi_a'_ — U5 ay : .‘.ig.. = ' Uiy .
dt cosar - di (A4 2r (1 —~cos )] cos a7

/90

vfhf sina

— . _2. y
Py = 2k -+ 2,04-107%-k (A, 4-2r(1—cos w)}? cos & @n

During the cold rolling of metals, the so-called elastic flattening of
rolls occurs in the deformation zone. This elastic flattening is accom~
panied by distortion and an increase in the capture arc. It also pro-
duces a pressure increase during the rolling, due to the fact that the
deformation conditions of the metal become worse (due to an increase in
the ratio R:hav). Thus, during cold rolling we must take the elastic
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contraction of the rolls into account when calculating the specific
pressure of the metal on the roll (of the rolls on the metal). In order
to obtain the total metal pressure on the roll, it is necessary to perform
integration over the actual capture arc (its projection on the axis x),
with allowance for the minus sign in front of the second term in the

right part of equation (27), i.e.,

ag

| 2,7 s L
P= p,daj [2k— 2,04.10~2. 4 ot i ] da, (28)
- _ [AyF-2r(l—cos.ax)]'cos =
By replacing the arc of the circle by a parabola, we obtain the following
vfhfnx
po=2k—2,04.10-2.p L1, (29)
(r + 2

This equation may be recommended for computations performed in

practice. Preliminary comparisons of formulas (27 and 28) with the experi-
mental data yield good results.

Scientific Translation Service
4849 Tocaloma Lane
La Canada, California

10



